# OPTIMUM ALLOCATION FOR CLUSTER SAMPLING ON TVO OCCASIONS 

R. R. CHANDAK and O. P. KATHURIA<br>IASRI, New Delhi<br>(Received : May, 1980)

Summary


#### Abstract

An estimator of population mean and its variance have been obtained for sampling on two occasions when a fixed proportion of clusters of units drawn on the first occasion is retained on the second occasion. A cost function for the sampling design has been considered and the problem of optimum allocation of sample clusters between matched and unmatched samples has been studied for varying sample sizes on each occasion. The efficiency of matching of clusters of units has been examined in relation to the matching of an equivalent simple random sample of units and the results illustrated with the data of area estimation enquiry on rice in Assam state.


Keywords : Optimum allocation, cluster sampling, Successive occasions.

## Introduction

Patterson [2] considered the problem of sampling on successive occasions and obtained efficient estimator of population mean on the $h$-th occasion. ${ }^{\text {Kuld }}$ Kiff [1] examined the problem of optimum allocation of units on the second occasion for a matching scheme in simple random sampling. In this paper we examine the problem of optimum allocation of clusters of units by taking an appropriate cost function and examine its efficiency with respect to simple random sampling (SRS).

## Estimate of Mean and Its Variance

Suppose that the population consists of a finite number of $N$ clusters each of $M$ units. On the first occasion a simple random sample of $n$
clusters is drawn without replacement and the value of the character under study, say $x$, is observed. On the second occasion we draw two random samples as follows:
(i) a simple random sample without replacement of $n_{1}$ clusters out of $n$ clusters drawn on the first occasion.
(ii) a simple random sample without replacement of $n_{2}$ clusters afresh from the remaining ( $N-n$ ) clusters in the population.

Observe the value of the character under the study for each unit in the sample of ( $n_{1}+n_{2}$ ) clusters. Further ( $n_{1}+n_{2}$ ) need not be equal to $n$. The best weighted estimator of the population mean $\bar{Y}$ on the second occasion may be written as

$$
\bar{y}=\frac{n^{\prime}\left[y_{1}+\left(\rho S_{b y} / S_{b x}\right)\left(\bar{x}-\bar{x}_{1}\right)\right]+n_{2 .} \bar{y}_{f_{2}}}{n^{\prime}+n_{2}}
$$

where

$$
\frac{1}{n^{\prime}}=\frac{\rho^{2}}{n}+\frac{1-\rho^{2}}{n_{1}}
$$

$\bar{x}_{1}$ and $\bar{y}_{1}$ are the means of $n_{1}$ clusters on first and second occasion respectively which are common on both the occasions and $\bar{x}$ and $\eta_{f 2}$ are the means based on $n$ and $n_{2}$ clusters on first and second occasions respectively.
$\rho$ is correlation coefficient between cluster means on first and second occasion, while $S_{b x}^{2}$ and $S_{b y}^{2}$ are the mean squares between cluster means in the population on first and second occasion respectively.

The variance of the estimate $\bar{y}$ is given by

$$
\begin{equation*}
\left.V(y)=\left[n^{\prime}+n_{2}\right)^{-1}-N^{-2}\right] S_{b y}^{2} \tag{2}
\end{equation*}
$$

If $p_{c}$ be the intra-class correlation coefficient defined as

$$
\rho_{c}=E\left(Y_{i j}-\bar{Y}\right)\left(Y_{i k}-\bar{Y}\right) / E\left(Y_{i j}-\bar{Y}\right)^{2}
$$

and

$$
S_{y}^{2}=(N M-1)^{-1} \sum_{i=1}^{N} \sum_{j=1}^{M}\left(Y_{i j}-\bar{Y}\right)^{\mathbf{2}}
$$

then following Sukhatme and Sukhatme (1970), we can write

$$
S_{b y}^{2}=M^{-2}(N-1)^{-1}(N M-1) S_{y}^{2}\left[1+(M-1) \rho_{c}\right]
$$

## Minimum Variance Allocations of $n_{1}$ and $n_{2}$ for Fixed Costs

We consider the following cost function for sampling on the second occasion.

$$
\begin{equation*}
C=c_{0}+c_{1} n_{5}+c_{2}\left(n_{1}+n_{2}\right) M \tag{3}
\end{equation*}
$$

where
$C=$ total cost of the survey for the second occasion; $c_{0}=$ overhead cost; $c_{1}=$ Cost per cluster on enumeration (including travel costs) and preparation of frame; and $c_{2}=$ Cost per element of enumeration and data collection from ultimate sampling units within clusters.

Denoting $\left(C-c_{0}\right) / c_{2}=R_{1}$ and $c_{1} / c_{2}=R_{2}$, the above cost function may be written as

$$
\begin{equation*}
R_{1}=R_{2} n_{2}+\left(n_{1}+n_{2}\right) M \tag{4}
\end{equation*}
$$

Minimizing (2) for a given (4), the optimum values of $n_{1}$ and $n_{2}$ may be obtained as

$$
\begin{align*}
& n_{1}=\frac{n}{\rho^{2}}\left[\sqrt{\eta\left(1-\rho^{2}\right)}-\left(1-\rho^{2}\right)\right] \\
& n_{2}=\eta^{-1}\left[R_{1} M^{-1}-n_{1}\right] \tag{5}
\end{align*}
$$

where,

$$
\eta=\left(R_{2}+M\right) / M
$$

To find the optimum sample sizes (under different conditions) we shall disregard the fact that the sample sizes must be integers. Also, the values so obtained must be under the following restrictions :

$$
\text { (i) } n_{1}>0 \text { (ii) } n_{2} \geqslant 0 \text { i.e. } n_{1} \leqslant R_{1} / M
$$

If $\rho \neq 0$, we get three distinct cases depending upon the values of various cost components and consequently on $R_{1}$ and $R_{3}$ as given in Table 1.

## Minimum Cost Allocation of $\boldsymbol{n}_{1}$ and $\boldsymbol{n}_{\mathrm{g}}$ for Fixed Variance

Let $Q=\left[n_{1}^{-1}+\rho^{2}\left(n^{-1}-n_{1}^{-1}\right)\right]^{-1}+n_{2}>0$
be a constant quantity and hence the variance $V(\bar{y})=\left(Q^{-1}-N^{-1}\right) S_{b y}^{2}$ is fixed. If we minimise the total cost given by (4) subject to (2), then it can be easily verified that the optimum solution for $n_{1}$ remains the same as given by equation (5) and $n_{2}$ is given by the relation

$$
\begin{equation*}
n_{2}=Q-n \rho^{-2}\left[1-\sqrt{\eta^{-1}\left(1-\rho^{2}\right)}\right] \tag{6}
\end{equation*}
$$

TABLE 1


III
(ii) $R_{1} \leqslant \eta \frac{n}{\rho^{2}}\left[\sqrt{\eta\left(1-\rho^{2}\right)}\right.$

$$
-\left(1-p^{2}\right]
$$

$$
\frac{R_{1}}{\eta}\left[\frac{1}{M}-\frac{1}{\eta}\right] \text { if } M<\eta \quad \frac{\left[1+\frac{R}{\eta}\left(\frac{1}{N_{2}}-\frac{1}{\eta}\right)\left(\frac{p^{2}}{n}+\frac{1-\rho^{2}}{R_{1}}\right)\right] \eta}{\left[\frac{\rho^{2}}{n}+\frac{1-p^{2}}{R_{1}} \eta\right] \quad \text { if } M<\eta}
$$

$$
0 \text { if } M \geqslant \eta \quad\left(\frac{p^{2}}{n}+\frac{1-p^{2}}{R_{1}} \eta\right)^{-1} \text { if } M \geqslant \eta
$$

As the sample size $n_{1} \mathrm{c}$ annot be greater than $n$ and $n_{2} \geqslant 0$, we again get three distinct cases providing optimum solution for $n_{1}$ and $n_{2}$ as given in Table 2.

TABLE 2-OPTIMUM ALLOCATION OF $n_{1}$ AND $n_{2}$ WHICH MINIMISES COST FUNCTION (4) FOR A FIXED

VARIANCE (2)

| Case | Condition | $n_{1}$ | $n_{2}$ |
| :--- | :--- | :--- | :--- | :--- |

I
(i) $\eta>\left(1-\rho^{2}\right)^{-1}$
$n$
$Q-n$
(ii) $Q>n$

II
(i) $\delta<\eta<\left(1-\rho^{2}\right)^{-1} \frac{n}{\rho^{2}}\left[\sqrt{\eta\left(1-\rho^{2}\right)-\left(1-\rho^{2}\right)}\right] \quad \dot{Q}-\frac{n}{\rho^{2}}\left[1-\sqrt{\frac{1-\rho^{2}}{\eta}}\right]$
(ii) $Q>\frac{n}{\rho^{2}}\left[1-\sqrt{\frac{1-\rho^{2}}{\eta}}\right]$

III
(i) $Q<n$

$$
\left(1-p^{2}\right)\left(\frac{1}{Q}-p^{2} / n\right)^{-1}
$$

0
(ii)

$$
Q<\frac{n}{\rho^{2}}\left[1-\sqrt{\frac{1-\rho^{2}}{\eta}}\right]
$$

## Numerical Illustration

We obtain optimum values of $n_{1}$ and $n_{2}$ and relative efficiency of cluster sampling for varying sizes as compared to an equivalent simple random sample of ( $n_{1}+n_{2}$ ) M units following Kulldorff's scheme for an area estimation survey on high yielding varieties of rice crop conducted during 1976-77 and 1977-78 by I.A.S.R.I. in Sibsagar district of Assam state. The sample sizes during the 2 years consisted of 300 and 228 cultivators respectively of which 108 cultivators constituted 'matched' units. For purpose of this study neighbouring cultivators were combined to form clusters of sizes 2,3 and 4 respectively, both for matched as'well as unmatched units. The relative efficiency of matching of clusters w.r.t. matching of an equivalent simple random sample for different cluster sizes is shown in Table 3, the character studied being the cultivated area under winter rice.

TABLE 3
$\left.\begin{array}{llllll}\hline & M & \hat{S}_{b}^{2} & \hat{S}_{w}^{2} & \hat{\rho}_{c} & \rho\end{array} \begin{array}{l}\text { Relative } \\ \text { efficiency }\end{array}\right]$
$\hat{S^{2}}=75728$ and $\hat{\rho_{1}}=0.826, \hat{S}_{b}^{2}, \hat{S}_{w}^{2}$ and $\hat{S^{\natural}}$ have their usual meanings. $\hat{\rho}_{c}, \hat{\rho}$ are estimates of $\rho_{c}, \rho$ defined in section 2 . $\hat{\rho}_{1}$ is estimate of correlation on per unit basis between the sampling units on first and second occasions.

Coasider now a matching scheme in $S R S$ without replacement for an equivalent sample of $n M$ units on the first occasion. On the second occasion $n_{1} M$ units are selected with $S R S$ without replacement from $n M$ units on the first occasion and $n_{2} M$ units are selected afresh from the remaining $(N-n) M$ population units again with $S R S$ without replacement. If the estimator based on these $\left(n_{1}+n_{2}\right) M$ units be denoted by $\bar{Y}_{S R S}$, it may be verified that $V\left(\bar{y}_{S R S}\right)$ will be

$$
V\left(\bar{f}_{S R S}\right)=M^{-1}\left(\phi^{-1}-N^{-1}\right) S^{2}
$$

where

$$
\begin{equation*}
\phi=\left(\frac{\rho_{1}^{2}}{n}+\frac{1-\rho_{1}^{2}}{n_{1}}\right)^{-1}+n_{2} \tag{7}
\end{equation*}
$$

For the above matching scheme in $S R S$ the cost function for sampling on the second occasion may be written as

$$
\begin{equation*}
C=c_{0}+c_{1} n_{2} M+c_{2}\left(n_{1}+n_{2}\right) M \tag{8}
\end{equation*}
$$

The optimum values of $n_{1} / n$ and $n_{2} / n$ may be obtained by minimising (7) for a given cost function (8). For the area estimation survey using $\hat{\rho}_{0}, \hat{\rho}_{1}$ and $\hat{\rho}$ as given in Table 3 , we obtain optimum $n_{1} / n$ and $n_{2} / n$ for matching scheme in $S R S$ and for clusters of sizes 2,3 and 4 and their relative efficiencies with respect to $S R S$ by using arbitrary value of $R_{1}$ and $R_{2}$. These are presented in Table $4(a)$ and $4(b)$ respectively. We do not assume that $\left(n_{1}+n_{2}\right)=n$ on the second occasion.

It may be seen that if the funds available for the survey are not restricted, there is scope for taking a larger sample of cultivators on the second occasion as compared to the first occasion. When funds are meagre the sample on the sec̣ond occasion may be even smaller than that on the firsṭ

## TABLE 4(a)-OPTIMUM $n_{1} / n, n_{2} / n$ FOR DIFFERENT VALUES OF $R_{1}$ AND $R_{2}$ FOR MATCHING IN $S R S$

| $R_{1} / R_{2}$ | $n_{1} / n$ |  |  |  |  |  | $n_{2} / n$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.2 | 0.5 | 1.0 | 2.0 | 5.0 | 100 | 0.2 | 0.5 | 1.0 | 2.0 | 5.0 | 10.0 |
| 100 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 |
| 500 | 0.34 | 0.55 | 0.70 | 0.96 | 1.00 | 1.00 | 0.57 | 0.56 | 0.54 | 0.52 | 0.51 | 0.51 |
| 1000 | 0.34 | 0.55 | 0.70 | 0.96 | 1.00 | 1.00 | 0.57 | 0.56 | 0.54 | 0.52 | 0.51 | 0.51 |
| 2000 | 0.34 | 0.55 | 0.70 | 0.96 | 1.00 | 1.00 | 0.57 | 0.56 | 0.54 | 0.52 | 0.51 | 0.51 |

occasion. As may be seen in case of $M=2$, and 4 (Table $4(b)$ ), no fres sample need be taken under some cases on the second occasion when $R_{1}=100$. Also when $R_{1}$ increases the efficiency of matching of clusters increases as compared to matching of an equivalent $S R S$.

Remark 1: When $\rho=0$ then the case II in Table 1 can not occur, only I or III would occur and the optimum values of $n_{1}$ and $n_{2}$ will be given by

$$
\begin{align*}
& n_{1}=\operatorname{Min}\left[n, R_{1} / \eta\right] \\
& n_{2}=\operatorname{Max} \cdot\left[\eta^{-1}\left(R_{1} M^{-1}-n\right), R_{1} \eta^{-1}\left(M^{-1}-\eta^{-1}\right), 0\right] \tag{9}
\end{align*}
$$

Remark 2: When $n_{1}+n_{2}=n$, i.e. the sample size remains same on both the occasions, then the optimum replacement fraction in terms of intra-class correlation coefficient and other constants is given by the following fourth degree equation in $\boldsymbol{q}$ :

$$
\begin{align*}
& q^{4}\left(R_{2}^{2} \rho_{c} \rho^{4}\right)+q^{3}\left[2 R_{2} \rho^{2} \rho_{c}\left(2-\rho^{2}\right) R+R_{2} \rho^{4}\left(\rho_{c}-2\right)\right. \\
& \left.\left.-2 R_{2}^{2} \rho_{c} \rho^{2}\right)\right]+q^{2}\left[3 R_{2} \rho^{2}\left(1-\rho_{c}\right)+R \rho^{4}\left(1+\rho_{c} R\right)\right. \\
& \left.+R_{2} \rho_{c} \cdot \rho^{2}\left(\rho^{2}+R_{2}\right)\right]+q\left[R \rho_{c} \rho^{2}\right)\left(2+\rho^{2}\right)-2 R \rho_{c} \rho^{2} \\
& \left.\left(R_{2}+R\right)-2 R \rho^{2}\right]+\left[\left(1-\rho_{c}\right)\left(R \rho^{2}-R_{2}\right)+R^{2} \rho_{c} \rho^{2}\right]=0 \tag{10}
\end{align*}
$$

where

$$
n_{2}=n q \text { and } n_{1}=n(1-q), R=R_{1} / n
$$

Table 5 gives the values of optimum $q$ for some values of $\rho, p_{0}, c_{1}, c_{2}$ and $C^{1}=C-c_{0}$ obtained by solving equation (10)

It may be seen that depending on the relative magnitudes of costs $c_{1}$ and $c_{2}$ and the total funds available optimum $q$ can be even far below. 1/2 which is the minimum replacement fraction in $S R S$. In Table 6 the relative efficiency of matching of clusters of sizes 2,3 and 4 in relation to matching of an equivalent $S R S$ for different values of $\rho_{c}, \rho$ and $\rho_{1}$ has been worked out.

TAB LE $4(b)$-OPTIMUM $n_{1} \mid n, n_{2} / n$ AND RELATIVE EFFICIENCY OF MATCHING OF CLUSTERS OF SIZES 2, 3 AND 4 AGAINST MATCHING OF EQUIVALENT SAMPLE OF SRS

|  | $n_{1} / n$ |  |  |  |  |  | $n_{2} / n$ |  |  |  |  |  | . | Relative efficiency |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R_{1} / R_{2}$ | 0.2 | 0.5 | 1.0 | 2.0 | 5.0 | 10.0 | 0.2 | -0.5 | 1.0 | 2.0 | 5.0 | 10.0 | 0.2 | 0.5 | 1.0 | 2.0 | 5.0 | 10.0 |
| For $M=2$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100 | 0.45 | 0.52 | 0.44 | 0.33 | 0.19 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.06 | 044 | 0.49 | 0.44 | 0.37 | 0.27 | 0.18 |
| 500 | 0.45 . | 0.52 | 0.64 | 0.85 | 0.95 | 0.56 | 1.19 | 0.91 | 0.68 | 0.41 | 0.20 | 0.18 | 1.10 | 0.97 | 0.84 | 0.71 | 0.62 | 0.49 |
| 10 Co | 0.45 | 0.52 | 0.64 | 0.85 | 1.00 | 1.00 | 2.62 | 2.25 | 1.79 | 1.24 | 0.67 | 0.39 | 2.05 | 1.76 | 1.46 | 1.15 | 0.88 | 0.73 |
| 2000 | 0.45 | 0.52 | 0.64 | 0.85 | 1.00 | 1.00 | 7.65 | 4.91 | 4.02 | 2.91 | 1.62 | 0.94 | 3.94 | 3.34 | 2.70 | 2.03 | 1.38 | 1.02 |
| For $M=3$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100 | 0.35 | 0.39 | 0.43 | 0.53 | 0.37 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.39 | 0.40 | 0.43 | 0.46 | 0.40 | 0.32 |
| 500 | 0.35 | 0.39 | 0.43 | 0.53 | 0.75 | 100 | 1.23 | 1.10 | 0.92 | 0.68 | 0.34 | 0.15 | 1.01 | 0.91 | 0.80 | 0.67 | 0.56 | 0.51 |
| 1000 | 0.35 | 0.39 | 0.43 | 053 | 0.75 | 1.00 | 2.79 | 2.53 | 2.17 | 1.68 | 0.97 | 0.54 | $1 \cdot 84$ | 1.62 | 1.39 | 1.12 | 0.84 | 0.68 |
| 2000 | 0.35 | 0.39 | 0.43 | 0.53 | 0.75 | 1.00 | 5.92 | 5.38 | 4.67 | 3.68 | 2.22. | 1.31 | 3.49 | 3.05 | 2.57 | 2.02 | 1.40 | 1.03 |
| For $M=4$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100 | -0.33 | 0.35 | 0.39 | 0.45 | 0.59 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.32 | 0.33 | 0.35 | 0.37 | 0.41 | 0.34 |
| 500 | 0.33 | 0.35 | 0.39 | 0.45 | 0.62 | 0.83 | 1.27 | 1.17 | 1.02 | 0.81 | 0.47 | 0.24 | 0.85 | 0.77 | 0.69 | 0.59 | 0.49 | 0.44 |
| 1000 | 0.33 | 0.35 | 0.39 | 0.45 | 0.62 | 0.83 | 2.85 | 2.65 | 2.36 | 1.92 | 1.21 | 0.71 | 1.54 | 1.38 | 1.21 | 1.00 | 0.76 | 0.61 |
| 2000 | 0.33 | 0.35 | 0.39 | 0.45 | 0.62 | 0.83 | 6.03 | 3.61 | 5.02 | 4.14 | 2.68 | 1.67 | 2.92 | 2.60 | 2.24 | 1.01 | 1.30 | 0.96 |

TABLE 5- $q_{0 \searrow t}$ FOR GIVEN VALUES OF $p, p_{c}, C_{1}, C_{2}$, AND $C^{1}$

| Po | $C^{1}=100$ |  |  |  |  |  | $050 C^{1}=200$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} p=0.5 \\ c_{1}=10 c_{1}=20 \\ c_{2}=20 c_{2}=10 \end{gathered}$ |  | 0.7 |  | 0.9 |  |  |  |  |  |  |  |
|  |  |  | $\begin{aligned} & c_{1}=10 c_{1}=20 \\ & c_{2}=20 c_{2}=10 \end{aligned}$ |  | $\begin{aligned} C_{1} & =10 C_{1}=20 \\ c_{2} & =20 \cdot c_{2}=10 \end{aligned}$ |  | $\begin{aligned} & c_{1}=10 c_{1}=20 \\ & c_{2}=20 c_{2}=10 \end{aligned}$ |  | $\begin{aligned} & c_{1}=10 c_{1}=20 \\ & c_{2}=20 c_{2}=10 \end{aligned}$ |  | $\begin{aligned} & c_{1}=10 \quad c_{1}=20 \\ & c_{2}=20 \quad c_{2}=10 \end{aligned}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.37 | 0.11 | 0.50 | 0.42 | 0.87 | 0.78 | 0.45 | 0.38 | 0.53 | 0.49 | 0.89 | 0.78 |
| 0.1 | 0.43 | 0.31 | 0.51 | 0.47 | 0.87 | 0.61 | 0.48 | 0.48 | 0.55 | 0.51 | 0.88 | 0.63 |
| 0.3 | 0.46 | 0.41 | 0.60 | 0.49 | 0.90 | 0.62 | 0.50 | 0.48 | 0.57 | 0.53 | 0.90 | 0.54 |

TABLE 6-EFFICIENCY OF MATCHING OF CLUSTERS OF UNITS IN RELATION TO MATCHING OF SRS

| P1 | $M=2$ |  |  |  |  |  | 3 |  |  |  |  | 4 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ค $\rho_{0}=(-) 0.3-0.1$ |  |  | 0.0 | 0.1 | 0.3 | -0.3 | -0.1 | 0.0 | 0.1 . | 0.3 | -0.3 | -0.1 | 0.0 | 0.1 | 0.3 |
|  |  |  | - |  |  | , |  |  |  |  |  |  |  |  |  |  |
| 0.5 | 0.5 | 1.43 | 1.11 | 1.00 | 0.91 | 0.77 | 2.50 | 1.25 | 1.00 | 0.83 | 0.62 | 10.00 | 1.43 | 1.00 | 0.77 | 0.53 |
|  | 0.7 | 1.56 | 1.21 | 1.09 | 0.99 | 0.81 | 2.72 | 1.36 | 1.09 | 0.91 | 0.68 | 10.88 | 1.56 | 1.09 | 0.81 | 0.57 |
|  | 0.9 | 1.86 | 1.44 | 1.30 | 1.18 | 1.00 | 3.24 | 1.62 | 1.30 | 1.08 | 0.82 | 12.99 | 1.86 | 1.30 | 1.00 | 0.68 |
|  | 0.95 | 2.43 | 1.89 | 1.70 | 1.55 | 1.31 | 4.25 | 2.12 | 1.70 | 1.42 | 1.06 | 17.00 | 2.43 | 1.70 | 1.31 | 0.89 |
| 0.7 | 0.5 | 1.31 | 1.02 | 0.92 | 0.84 | 0.71 | 2.30 | 1.15 | 0.92 | 0.77 | 0.57 | 9.18 | $1.3,1$ | 0.92 | 0.71 | 0.48 |
|  | 0.7 | 1.43 | $1.11^{-}$ | 1.00 | 0.91 | 0.77 | 2.50 | 1.25 | ' 1.00 | 0.83 | 0.63 | 10.00 | 1.43 | 1.00 | 0.77 | 0.53 |
|  | 0.9 | 1.70 | 1.33 | 1.19 | 1.08 | 0.92 | 2.98 | 1.49 | 1.19 | 1.00 | 0.75 | 11.93 | 1.71 | 1.19 | 0.92 | 0.63 |
|  | 0.95 | 2.23 | 1.74 | 1.56 | -1.42 | 1.20 | 3.90 | 1.95 | 1.56 | 1.30 | 0.98 | 15.61 | 2.23 | 1.56 | 1.20 | 0.82 |
| 0.9 | 0.5 | 1.10 | 0.85 | 0.77 | 0.70 | 0.59 | 1.92 | 0.96 | 0.77 | 0.64 | 0.48 | 7.69 | 1.10 | 0.77 | 0.59 | 0.41 |
|  | 0.7 | 1.20 | 0.93 | 0.84 | 0.76 | 0.64 | 2.09 | 1.05 | 0.84. | 0.70 | 0.52 | 8.38 | 1.20 | 0.84 | 0.64 | 0.44 |
|  | 0.9 | 1.43 | 1.11 | 1.00 | 0.91 | 0.77 | 2.50 | 1.25 | 1.00 | 0.83 | 0.63 | 10.00 | 1.43 | 1.00 | 0.77 | 0.53 |
|  | 0.95 | 1.87 | 1.45 | 1.31 | 1.19 | 1.01 | 3.27 | 1.64 | . 1.31 | . 1.09 | 0.82 | 13.08 | 1.87 | 1.31 | 1.01 | 0.69 |
| 0.095 | 0.5 | 0.84 | 0.65 | 0.59 | 0.54 | 0.45 | 1.47 | 0.74 | 0.54 | 0.49 | 0.37 | 5.88 | 0.84 | 0.59 | 0.45 | 0.31 |
|  | 0.7 | . 0.92 | 0.71 | 0.64 | 0.59 . | 0.49 | 1.60 | 0.81 | 0.04 | 0.53 | 0.40 | 6.40 | 0.92 | . 0.64 | 0.49 | 0.34 |
|  | 0.9 | 1.09 | 0.85 | 0.76 | 0.70 | 0.59 | 1.91 | 0.96 | 0.76 | 0.64 | 0.48 | 7.64 | 1.09 | 0.76 | 0.59 | 0.40 |
|  | 0.95 | 1.43 | 1.11 | 1.00 | 80.91 | 0.77 | 2.50 | 1.25 | 1.00 | 0.83 | 0.63 | 10.00 | 1.43 | 1.00 | 0.77 | 0.53 |

## ACKNOWLEDGEMENT

The authors are grateful to the referees for some useful suggestions.

## REFERENCES

[1] Kulldorff, G. (1963) : Some problems of optimum allocation for sampling on two occasions, Rev. Inter. Statist. Inst, 31: 29-50.
[2] Patterson, H. D. (1950) : Sampling on successive occasions with partial replacement of units, JRSS. Series B, 12:241-255.
[3] Sukhatme, P. V. and Sukhatme, B. V. (1970) : Sampling theory of surveys with applications, Asia Publishing House, Bombay.

